Variability compensated support vector machines applied to speaker verification
نویسندگان
چکیده
Speaker verification using SVMs has proven successful, specifically using the GSV Kernel [1] with nuisance attribute projection (NAP) [2]. Also, the recent popularity and success of joint factor analysis [3] has led to promising attempts to use speaker factors directly as SVM features [4]. NAP projection and the use of speaker factors with SVMs are methods of handling variability in SVM speaker verification: NAP by removing undesirable nuisance variability, and using the speaker factors by forcing the discrimination to be performed based on inter-speaker variability. These successes have led us to propose a new method we call variability compensated SVM (VCSVM) to handle both inter and intra-speaker variability directly in the SVM optimization. This is done by adding a regularized penalty to the optimization that biases the normal to the hyperplane to be orthogonal to the nuisance subspace or alternatively to the complement of the subspace containing the inter-speaker variability. This bias will attempt to ensure that inter-speaker variability is used in the recognition while intra-speaker variability is ignored. In this paper, we present the VCSVM theory and promising results on nuisance compensation.
منابع مشابه
Linear and non linear kernel GMM supervector machines for speaker verification
This paper presents a comparison between Support Vector Machines (SVM) speaker verification systems based on linear and non linear kernels defined in GMM supervector space. We describe how these kernel functions are related and we show how the nuisance attribute projection (NAP) technique can be used with both of these kernels to deal with the session variability problem. We demonstrate the imp...
متن کاملSupport vector machines versus fast scoring in the low-dimensional total variability space for speaker verification
This paper presents a new speaker verification system architecture based on Joint Factor Analysis (JFA) as feature extractor. In this modeling, the JFA is used to define a new low-dimensional space named the total variability factor space, instead of both channel and speaker variability spaces for the classical JFA. The main contribution in this approach, is the use of the cosine kernel in the ...
متن کاملSupport Vector Machines for Speaker Verification and Identification
In this paper the performance of the support vector machine (SVM) on a speaker verification task is assessed. Since speaker verification requires binary decisions, support vector machines seem to be a promising candidate to perform the task. A new technique for normalising the polynomial kernel is developed and used to achieve performance comparable to other classifiers on the YOHO database. We...
متن کاملStudy on the effects of intrinsic variation using i-vectors in text-independent speaker verification
Speaker verification performance is adversely affected by mismatches between training and testing data in intrinsic variations. This paper explores how recent technologies focused on modeling the total variability behave in addressing the effects of intrinsic variation in speaker verification. The effects of intrinsic variation are investigated from six aspects including speaking style, speakin...
متن کاملCompensation of Intrinsic Variability with Factor Analysis Modeling for Robust Speaker Verification
Performances of speaker verification systems are adversely affected by intrinsic variability in the real world applications. In this paper, factor analysis approaches of Joint Factor Analysis (JFA) and i-vector modeling are used to address the effects of intrinsic variations for robust speaker verification. The speaker variability and intrinsic variability are modeled with the speaker and sessi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009